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Abstract—Two-dimensional iterative procedures for the determination of the components of the stress tensor
and of the displacement vector in thin anisotropic shells (plates) are derived from the three-dimensional (geo-
metrically) non-linear equations of the elastic continuum theory by means of the method of asymptotic integration.
The conditions, both for cases when the main system of equations of the iterative process is linear and for cases
when the main system of the zeroth order approximation is non-linear, are given in terms of characteristic
quantities, which characterise geometric and material properties of the shell (plate), and the intensity and the
variability of the surface load. The attention is confined to the interior problem, the discussion of edge effects
is omitted.

INTRODUCTION

THE problem considered in this paper is the derivation of approximate two-dimensional
theories of thin plates and shells starting from the three-dimensional geometrically non-
linear equations of elastic continuum theory. The method of derivation adopted here
is an extension of the method of asymptotic integration used in a series of articles con-
cerning the linear theory of shells and plates (see, e.g. [1-4]).

Recently, Rutten [5] has presented a different asymptotic approach in comparison
with those of [1-4]. Employing the extended Chien’s [6] method the two-dimensional
interior shell equations are derived there first, and only then is the usual asymptotic
technique adopted for an analysis of these equations. Various types of edge effects are
also discussed in [S].

From the numerous literature concerned with other methods of reducing three-
dimensional problems to lower-dimensional problems only papers by John [7, 8], Sen-
sening [9], Koiter [10, 11] and Habip [12] are mentioned here (survey papers of recent
developments have been published recently by Koiter [13] and Gol’denveizer [14]).

Especially Refs. [7-9] are of great interest. On using standard techniques from the theory
of elliptic partial differential equations the derivation of approximate equations is
accomplished there with certain estimates of errors made in the analysis.

The present paper begins with a restatement of the fundamental equations of the
geometrically non-linear theory of elasticity for thin shells and plates of a homogeneous
anisotropic material, having one plane of elastic symmetry which is parallel to the middle
surface of the shell. These equations may be expressed in a number of alternative forms.
For our purpose it is most convenient to use the non-linear equations in terms of a reference
state as a basis for further investigation. The same form of the system of non-linear three-
dimensional equations was used by Habip [12] for the derivation of two-dimensional
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non-linear field equations of elastic shell theory in terms of a reference state by means of
the modified Hellinger-Reissner variational theorem. It may be of interest to compare
the derivation and the resulting equations in [12] with those presented in this paper.

The system of equations given in Section 1 includes coefficients and unknown functions
of different physical nature, and therefore, is not suitable for the order-of-magnitude
analysis. To put these equations in the appropriate form, in Section 2 the non-dimensional
components of stress and displacements are introduced and the equations are transformed
into a new set of non-dimensional variables in which derivatives of the unknown functions
are of the same order of magnitude as the functions themselves. Then, some further simple
rearrangements are made, in consequence of which the non-dimensional coefficients in
the transformed system are of unit magnitude at the maximum. In the non-dimensional
form of the system of equations, the ratios of quantities characterising geometrical and
material properties of the shell as well as qualitative and quantitative properties of an
external load appear, and when considering these ratios as powers of a small parameter,
we finally get the system of equations with the small parameter.

This system of equations is solved in Section 3 by the usual asymptotic procedure:
the unknown functions are assumed to have the form of asymptotic expansions, these are
then substituted into the equations and the coefficients of the equal powers of the small
parameter are then equated. The structure of the obtained iterative process depends on
mutual relations among the ratios of characteristic quantities. The limit is given when the
state of stress and strain in the shell can be determined according to the linear iterative
process.

The non-linear equations of the zeroth order approximation are given in Section 4.
These equations are in complete agreement with those of the classical non-linear theory of
plates and shells,

As the attention in this paper is confined to the so-called interior problem, we are
omitting the discussion of the edge effects.

1. FUNDAMENTAL EQUATIONS

The system of fundamental (geometrically) non-linear three-dimensional equations
of the elastic continuum theory, which will be analysed in this paper, consists of three
equations of static equilibrium (without body forces) and six linear stress-strain relations,
in which the components of the strain tensor are expressed in terms of components of
the displacement vector. The unknown quantities are, therefore, the six independent
components of the stress tensor and the three components of the displacement vector.
As was pointed out in the introduction, it is most convenient to write the basic equations
of a continuum theory in terms of a reference state. The stress state of a shell will then be
defined according to [15] by the symmetric stress tensor s/ measured per unit area of the
undeformed body, and the components of the displacement vector are referred to the
base vectors of the undeformed body.

Adapting the notation used by [3] the basic equations are

Tii=0, Yii = ijch“, ( )i= 0/0% (i = 1,2,3). (1L.1)

In equation (1.1), T; d$/ d8* (i # j # k) is the force vector acting on an element of area ?n
the surface 9 = const, Fj;, are the elastic coefficients of the body and y;; is the strain
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tensor. For T; and y;; we have
T, = \/(g)sijGj = \/(g)tijgj, g = detg;;,

(1.2)
Y =Hg:.V;+g . V;+V,. V),

where V is a displacement vector, g; and g;; are the base vectors and the metric tensor of
the undeformed body respectively, and G; are the base vectors of the deformed body. The
fundamental equations (1.1) and (1.2) are written in the system of curvilinear convected
coordinates §° (which deform continuously with the body). In the following, we identify
the general convected coordinate system $° with a set of normal convected coordinates
in which the points of a shell are defined by the position vector

R(%) = r(9%)+ 9%a,(9%), —g <¥< g, (x=1,2) (1.3)

where r is the position vector of points of the middle surface of the shell, a, is a unit normal
to the middle surface and h is the constant thickness of the shell. The base vectors and
the metric tensor associated with the coordinate system 3% in the middle surface, the curva-
ture tensor and the Gaussian curvature of the shell middle surface are denoted by a,,
A5, byp and K respectively.

From (1.3) there follows

8. = R,a = ”iala Hy = 55_‘93b;'9

8up = Ba- 8y = HalthBixs Ay = 8,.8 =T,.T, (1.4)
p = det iy = 1—93%b%+(9)%K, K = det bj.

The displacement vector V can be expressed in alternative forms as
V =1'g; = vg = u'a,+wa; = u,a"+ wa, (1.5)
and its derivatives with respect to §' are

V.o = (Vu; —by;w)a* +(V,w + bju,)as, 16)
V’3 = u,,3ﬂ“+w,3a3, ’

where V, denotes the covariant differentiation with respect to 3 using the metric tensor
of the undeformed body.

As we restrict our attention only to shells of homogeneous anisotropic material having
one plane of elastic symmetry, which is perpendicular to the normal to the middle surface,
the number of non-zero coefficients F;,; in (1.1) will be 13 (coefficients of the type F,;;,
F,4y3 vanish). All non-zero elastic coefficients are shifted parallel to the middle surface
(using pj as a shifter according to [16]) and the shifted coefficients are developed into Taylor
series in the variable 9°. In this way we obtain relations

Fopyu = #iﬂﬁ#‘fﬂ; zZo (ss)lF%ww F3333 = F3333(9%),
(1.7

Foaps = #i#ﬁ IZO (93)1F51”3¢3’ Figsz = #iﬂf} Z (sa)lFaua”'
= =0
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Temporarily using the notation
T; = (a, +17a3) /(a), (1.8)
where from (1.2)
i = uplte '3 = '3, (1.9)
we can directly write down equilibrium equations by using the derivation from Ref. [3]

V¥ —bE3+ 7 = 0, Vi 4 bt + 8% = 0. (1.10)
If we substitute (1.9) in (1.10) using the expressions (see [15, 16])
= s8] +vd,), (1.1
and

vly = (™ BV =biwh oy = (e s,

3 =y b..ut K TH— “he b s (112)
v Ia aw+ AU, v 13 w.ﬂa ((.u )ﬂﬂy )

where the vertical line denotes the covariant derivative with respect to the coordinates 9
in the undeformed body, and if we substitute {1.6) and (1.7) into the second equation in (1.1),
then we can write the basic system of equations for the determination of the state of stress
and strain in the shell in the form.

V. [0*(pf +V,uf — bEw) + %3] — b[o™(V W+ b, u*) + 0" (1 +w 3)]
+[o73 (W + Vil —bbwy+033uh3] 5 = 0, (1.13)
V[0V, w+ b, u)+ 653 (1 +w 3)] + b,y[0™(uf + V i — bw) 4+ 0**uls]
+[oP(V,w+but)+0>3(1+w3)l 3 =0,
Lu[(udV 5 + 13V Juy — (b ap + bW + (Vi — byyw) (Vg — biw) +(Vow + b‘ul)
X (Vow+bju,)] = pabusus, Y, (9°VEGa™ + puiu ;0 (93)FY,

130'

i’ﬂ[ﬂé“x,.’,*‘ Vw+blu, +(Vou, — bzzw)“,}‘z‘ +(V,w+ bﬁua)w, 3]
= 2uluf Z () Fih 307,
{3}

uiw 3 +3((w, ) +u, aUh)) = F3333033+ﬂuﬁ§ Z (93)1F3310

where

o = s’ (6% = ¢/, (1.14)

The solution of this system of equations should, furthermore, satisfy the following
boundary conditions on the deformed faces of the shell

Lot = g oniGj = P, (115)
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where ,n; are the components of the unit normal on to the faces of the shell in its undeformed

state _
ol = on;g’, (1.16)

and the components of the external load vector P in (1.15), are measured per unit area of
the middle surface of the undeformed body. As

om = +6; (1.17)
on the faces 9% = +1h, the surface conditions become
63421, = P =20,
(6°]55-—y» = PL =2Q",

where P',, P._ are components of the external load vector P acting on faces 9° = %h,
9% = —1h respectively,

P = Pi Gi 93 = lh,
i ? (1.19)
P=-PG; 93 = —1ih,
and the quantity 2 in (1.18) is chosen in such a manner that
max(Q3,,0% ) ~ 1. (1.20)

Generally, the edge conditions should also be taken into account when choosing # but
the former are left out from our consideration since only the interior shell problem is
investigated here.

In section 3 some order-of-magnitude restrictions on the ratios Q%/Q? will be given.

2. CHARACTERISTIC QUANTITIES. NON-DIMENSIONAL FORM OF THE
FUNDAMENTAL EQUATIONS

The system of basic equations (1.13) with surface conditions (1.18) will be now treated
by the method of asymptotic integration. At first, the system (1.13) is rewritten in non-
dimensional form. On account of this arrangement the ratios of various quantities charac-
terising the geometrical and material properties of a shell, and the quantitative and quali-
tative properties of the external load (which is assumed to be sufficiently smooth) appear
explicitly in the transformed system of equations. Taking these ratios as powers of the
small parameter we have to solve a system of equations with small parameter, which we
treat by the usual asymptotic procedure.

We begin with an analysis of geometrical properties of the shell. In this analysis we
use normal coordinates satisfying

Qg X 1. (2.1

The position of the point of the shell is determined by values of coordinates ¥, which
without loss of generality may be assumed to range over intervals

0<% <p —< ¥ < g (2.2)

NSRS
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and further we consider only the case, when
B! ~ B2 (2.3)

Geometrical properties of the shell can be characterised by quantities h, § and R, where h
is the constant thickness of the shell, § is the characteristic diameter of the region of the
space which is occupied by the shell (8 ~ %) and R is the “‘generalised” characteristic
radius of curvature of the shell middle surface satisfying relations (see also F. John [7])

b3~ R™Y,  Vphix R V.Vsb~ R73, ... (2.4)
The material property of the considered shell is characterised by the quantity E from
F =ET'RTIGH,  (1=0,1,2,..), (2.5
where E is defined by the requirement, that the following relations are satisfied
Gy~ 1, (G = E[Fynlss=0 = O). (2.6)

The quantitative characteristic of the external load is quantity 2 from (1.18). Finally,
we introduce quantity L—the smallest “‘wave” length of the deformation and stress pattern
on the middle surface, defined by (see Koiter [10])

du .
f-a; ~ LY, 2.7)

where % stands for arbitrary unknown quantity from (1.13) and ds is any arc element on
the middle surface.
For our purposes we shall use (2.7) in the alternative form

IV, % ~ L™ Y4%). 2.8)

Our problem is thus characterised by the “length” quantities h, §, R, L and by *‘force-
per-unit-area” quantities E and 2. Except for the quantity L, all other characteristic
quantities can be determined directly from their definition. Since for a thin shell we assume
that the pattern of components of the stress resembles that of their prescribed values on
the faces of the shell, we shall determine quantity L from

V.[P]~ L™'[P]. 2.9

where [P] stands for an arbitrary component of the external load, and L is, therefore, a
qualitative characteristic of the external load. Now we put

h_ —4 l_{_.p !i_ -p _§=P

Zﬁ—ﬂ s L“ﬂ, =1n , P n., (2.10)
where 7 is chosen in such a manner that g, p, p*, p are integers (with g > 0). The quantity
n~" will be the small parameter in system (1.13) after its transformation into new co-
ordinates, as will be shown later on, and we shall then treat this system for 77! -0

Proceeding further, we introduce non-dimensional forms for the components oY, u,, w

o' = PSY, u, = pU,, u* = pU°, w= W (2.11)
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and we also perform a transformation of coordinates §' into a set of new non-dimensional

variables x’
x* = [71§ x3 = g93. (2.12)
In coordinates x* we have instead of (2.8) the relation
VXU ~ U (2.13)

where V¥ is the symbol of covariant differentiation with respect to coordinates x*(V* = LV,)
and % stands for U,, W, §. Performing the above described transformations, taking

{2.10) into consideration, and using the notation

h gyt
SR d =a+pT,

we write (1.13) in the following form:
nPVES(85 —n =" x3RbE +nPVIUP —n " RBEW)
+78530,UP] — 0" * P x3 RAV, ST — 20" RV, bP)ST W
— 177" RBA[S(nPVEW 477" Rb, U+ S*3(1 + 105 W)] +n70,[S7¥(5*
=0~ X R +qPVRUF —n TP RBEW) + 128330, U*] = 0,
nEVES PV W+n""*RbMU’1)+S“3(1 + 10,4 W)]~H?_2’”Rz(Vmby,l)S"”U’1
177 Rb,p[S™(00 —n~ 4 x> RBE +- PV U — = P” REW) +995%30,U%]
+r;"%[S“(n"V;‘Wﬂl-q“’*RbMU‘)+S33(] +yi0, Wy =0,
n” i (= DY =5 R )nP(VEU, + VU, )= 207" R, W

(2.14)

i=0

-0~ X3 [PR(BIVE + biVHU, —n~ P Rz(b‘lb,w—i-b;}bm)W]+(r]"V"‘U,WL
P’ Rb W) VEUA =17 ROYW)+(PVE W+ RBAU) (Vi W+n~"" RbjU,)}
(= LY =000 R, g GU, 57>

Z
2 - s
Z L (= DAY g0 R g Gl 572, (2.15)

FL 'Zo (— D(x3Yn _jq+Rj(IOj){’Tq53 U, +nPVEW+n~?" RbYU, —x%8, Uy

=
+0203UMPVEU ,—n """ Rb ;W) + 190, W(nPVEW 477" RbU )}
2
=23 % (I O R G
T . > . v
n° jZO (= 1Y(x*yn i Rl ) {0 s W+ in* (0, W) + (05U )a;U}

= Z Y (—1Y(x3ytigmurhe R“’(Iz;)iﬁcggzesﬁ‘}‘63333833

j=01i=0
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where
03 =20/0x", (o) =1 (o)) =bj, (o) =K,
Ipih = Z«Siézéz bﬁé:b:.

i—j J

(2.16)

In the sum from (2.16), the summed up terms are of the same pattern for the d and b factors,
differing from each other only by the combination of couples of subscripts and super-
scripts. Hence, the number of the summed terms is equal to the number of combination
of i things (i—j) at a time.

Let it be illustrated by the following example

(I4,)i897 = 6%04b2b) + 6502bgby, + 020,b4by
+ 0§05bLb,+ 848642 + 00 8,babS .
Furthermore, we must keep in mind that when arranging the notation of (2.15) into the
possibly most compact form we had to prescribe the following property to the operation V}
V¥b, = 0. (2.17)

When applying the foregoing asymptotic procedure to the surface conditions (1.18) we

obtain
[Sl3]x3=1 = l+’

. , 2.18
[Sls]x:‘: -1 = Q'— . ( )

3. METHOD OF SOLUTION AND RESULTING FORM OF ITERATIVE
PROCESSES

The solution of the system of equations (2.15) subject to the surface conditions (2.18)
is assumed to have the form
Sij — n"ij Z rl—ssg‘]’ W = ’7’3 Z ?)_SW[s],

s=0 =0

(3.1)
U,=n"Y n*US, s = t/a, t=0,1,2,...,
5=0
where a is a constant given in (3.7).
The components of the external load are also expanded into asymptotic series
Ql+ — ’17‘1‘3 Z n—sQ{'s]+, Ql—= nria Z W_sQfs1—- (32)
s=0 s=0
In what follows only the surface load satisfying
Q= Q> xy STya—T33, (3.3)
will be considered.
Notice that from (1.20), (3.2) and (3.3) we have
Qe = Q- =0 if s<r,;—x (ry3 = 0). (34)

The iterative procedure for successive determination of the coefficients of the asymptotic
expansions (3.1) can now be obtained by the usual procedure of the asymptotic methods:
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expressions (3.1) and (3.2) are substituted into (2.15) and (2.18) and the coefficients of
powers of the small parameter ! are then equated in the system of equations obtained
in this way.

In order to obtain a non-contradictory iterative process the set of exponents r from
(3.1) must be adequately chosen in dependence on mutual relations existing among ex-
ponents ¢, p, p* and the exponent p must also satisfy an additional restricting inequality.

We have to consider separately three different cases, defined by the respective in-
equalities

(A): p" <g-2p, p=q*+2p" +2p (and simultaneously p > g*);

(B): p* =q-2p, p>4Hqg-p) (3.5)
(C): g—p < p < min[g* +2p* +2p, 4g—p)]

The corresponding non-contradictory sets of exponents r are

(A):rs3=0, Tra=p+p", rup=4q", n=g¢"-p-p, r3=g"+p —p;
(B): r33=0, raa=q-p rg=29-p), r.=29-3p—p, r3=3q—dp-p;
©:r33=0,  ra=3p—a+p), 1y =329-2p+p) r.=¥2q—5p—2)

rs = 3g—4p—p); (3.6)
and the constant a from (3.1) takes the respective values

a=1 in cases (A), (B);
(3.7)
a=3 in case (C).

On using (3.6) and (3.7) and performing the above procedure of asymptotic integration
we obtain the iterative process for the determination of the unknown quantities [of coefli-
cients of (3.1)]. The iterative process still has a three-dimensional form, it includes derivatives
of unknown quantities with respect to x> and powers of x* itself as coefficients.

The elimination of the independent variable x* may be performed by writing

Aij A A3
Sh= Y (S, UM = Y U, WY = ) W (38)
n=0 a=0 n=0
substituting (3.8) into equations of iterative process and by equating the coefficients of
powers of x* (which procedure is equivalent to the integration with respect to x3). The
detailed analysis of the system (2.15) shows that the presented procedure of the derivation
of a two-dimensional iterative process can be successfully applied when the exponent p
satisfies the second inequalities from (3.5). In that way we obtain only one physically
admissible two-dimensional iterative process since for p > 2¢* in case (A)and p > 4(q—p)
in case (B) the three-dimensional form of the iterative process is linear in x* and for
other possible cases from (3.5) the non-linear in x* approximation to the last equation
from (2.15)

(@;WE2 =0 ifs<s*  s*=2g%—p A),
O, WL Ha, W2 = g, *=0 (B), (3.9)
s* = H4q—4p—p) (O),
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has only one physically meaningful solution
Wit = Wisl(x?), s < s*. (3.10}

At this point, it is convenient to transform the resulting equations of the iterative
process to the coordinates 3* by performing inverse transformation to (2.12.1). Further, we
turn back to the dimensional form of the components of stress and displacement ¥, u_, w,
and instead of (3.1), (3.2) we introduce the following expansions for the unknown com-
ponents ¢, u,, w and for the components P’ of the external load

||M>*

I S

o
“

w = (Pywtnl, Pl= % Ply; (3.11)
s=0

s=0n=0
(U[s "= gp”r,j—ss[s s u&s,n] — ﬁnr&-—sUa[[s,n]’ W[s’"] —_ ﬂi’]'swsw[s‘"],

Py = P1°7°Q1y)

1l
It

In consequence of these rearrangements, the characteristic quantities §, R, L, #, E, the

choice of which is arbitrary to some extent, are eliminated from the resulting form of

the iterative process used for the determination of the coefficients of expansions (3.11).
After introducing the notation

a n
Z Z x[xA . yB], Z xx Ay ~}’B[k,m1,

i+ki+m i+k=ap l+m=n

Il

Y 3 x[(1+1)xA.yB), = YooY s+ DxAg - YBrm

i+ki+m itk=a,l+m=n

a n

Y Y wlm+1)xA.yBl,= ) 3 dm+1xAgy. YBume (3.12)
itki+m itk=a ltm=n

S S (4 D)mtxA.yBl = ¥ Y s+ Dmt DxAgsssy. YBmery

itkilt+m itk=a; l+m=n

S T omt Dm+DxA Bl = T Y xlm+1)m+ DxAun. yBimsar

i+ki+m itk=a ltm=n

{where x is an arbitrary coefficient, x and y represent operators V, or arbitrary coefficients,
A and B represent any quantities from among 6%, u,, w; i, k, I, m, t take values 0,1,2,.

and in the brackets the usual rules for arithmetic operations and for dxﬂ'erenuatton are
preserved) we are in position to present a compact form of the relations for successive
determination of the coefficients of the expansions (3.11)
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h

h
L ofm = —5{‘716%5;,"-u—;tbﬁva‘s‘;zz,,.m+(Vab§)af;;,,,_2g

a n—1

—(n+Dbhofn-n+ Y 2 {[Va(ff‘”.Vyu”)]s—b’y’[Va(tT”~W)]e

2
+ollm+ V(6™ . u)]; = (VD) 0™ . wlg—Bi[0* . V,Wlo — b, (0™ . 4]0

i+kl+m

2 2
= b+ 10w 2m+ Do w4210+ 1o Vo

+(m+1)g*3. auﬁ}u-i-(z) [(I+D(m+ 1) . v +(m+ 1)(m+2)0>. u’“]n}};

2. a[s n =

(n=1,2,...,4,3)

41 = S+P—q+Tap a3, ag =S—q" —pT +rytr3—T,,
a;=a;—q", ag = ag+p+p",
as =a,—p—p", Ao = S—q" —p* +rytr,—r,,
as =s—q°, apy =s—p*+r;,

s = s+2p—q+r,+r,— 1,3, Ay, =Ss+p+r,,
g = S+p—q  +ry+r3—r,, 33 = 5+q+raz+r,—F.3;

a7 = S+p+r,,

_k
2n
b n—1

+Y Y {[Va(a” Vow)la 4 bopl(V,07) . 4 + 207 .V uf)

h
3
{Vafffbx,n— 11+ bog0it - 1y~ Ebaﬂbga a2

itkl+m

2
+(V.b,)[67 . u*le +£ [+ D™ . V,w+(m+1)(V,0") . w

(3.13)

. 2
+2Am-+ D07 Vs —bogbllo® Wy + - bygl+ o™ .48 + 2m+ 110w,

2 2
+(E) [(l+1)(m+1)a33.w+(m+1)(m+2)a33.w]10}} , (n=12...

bl =S+p—q+T,3— "3z, b6 = bs_P_'p+a
by =s~q" +r,5—r33, by =s+p+r+ry—ris,
by =b,—q", bs=3_4+“l’++"w+"3““’”33’

by =s+2p—q+r,y+r3—rss, bo = s=p" +rs+r, =133,
by =s+p—q++rag+?‘;~'r33, b10=S+q+T3§

s 433)5
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3. offy = H7REM  (n=0,1,...,4,),
H®FEL, = 5 (530% +636),
Hbvr — fBovx - pabwy _ g,
12 . .
R[s nl __ 5 Z ( ) (I()]) [V u[c; n— J]_'_Vﬂu;cl,n-q]_2baﬂw[cz.n~./]

f ,
- (bﬂvﬁ+bﬂv Julern =~ ”+—§<b:bm+bsbza>wk~"~f~ﬂ]

+j
-y z< zm,,}() (Lo )P0 o

=0 j=

“Z Z( 1)’( ) (IZj)i 51'(]»330'&” i j]

i=0 j=0
+§ ;0(—1)’( ) (IOJ){;( :i {[V.w. Vowl, +[V,u, . V'l

- [(blavﬁ + b,wVa)u WU, (blVﬂ + b A% )W]g

+bbiw . wlio+bibslu, . uiaky
where {xo0} = 0, {3;;} = 1 if simultaneously i # 0, j # 0,

€ =SHp+p—jqt +r, =Ty, c7=S+2p+p—jqt +2r3—ry,
C2=8=p +p—jq T +rs=ry,  cg=5+2p+p—jqg +2r,—ry,
c3=c1—q", Co=5+p—p +p—jqgT +rs+r,—ry,
¢y =c3—q"%, Cio=5=2p +p—jqg* +2r;—ry.

cs =s—(i+j)q", ci1=5=2p  +p—jqgt +2r,—ry;

Ce = S'—(l+.])q+ +r33—‘raﬁa

. h )
e AL )(W[{m}(n—;)uf*'"-fwivmwm’"ﬂ““
. pivict
‘“5(""‘]"2)19114?3'"-1“”] -4% Z (-1 ( ) (28 F, s0fd imio 1y
i=0 j=0
2 1h j+1 d n-j—1 N
3 ] T8 0 V-
i= £ m
—(m+ Dt wlg + {1+ Dw. Vzw]7}}} n=12,...,4,)
d, =s—jg", ds =s+p—jqg* +r,,
dy =s—q+p—jqg*+ry—r,, de = s—p* —jg* +rs,
dy=d;—q", dy = s+p—jq* +2ry—r,;

dy = s—q—p—(i+j)g" +ry—r,,
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i+ji+1 .
5. wisnl = *{z Z (- 1)’( ) (I )8 F %088 aimio1)

i=0 j=

+5Faant e~ Z (- 1)( )(10;){{X1}("”J)W[e3" 2

1.8 n—~j—1
+EZ 2

itk l+m

{[d+ D(m+ Dw. wlg+[(I+ 1) (m+ D, . “a]s}}}

(n=12...,4)
ey =s5—q—(i+)q" —p+ry—ry, es=s+q—jg +r3,

€ =8—q—p+r3;—r;, es = s+q—jq* +2r,—r3;
ey =s—jq",
1t is to be noted that in (3.13)
ol g=wE =y =0 if s<0;n<O0orn> 4 (3.14)

and that the symbol {y;} in relations 4,5 of (3.13) has the following meaning

{x0} =0, xp=1if j#0. (3.15)

Further, the exponent A, in relation 5 of (3.13) should be taken as zero if s < s*, s* being
given in {3.9). From the examination of (3.13) it is obvious that, provided the quantities
ul>0, w0l 613, are known, all the other coefficients of expansions (3.11) with index s
can be determined directly from (3.13) using only arithmetic operations and differentiation.
The basic unknown quantities «l>%, wi*%, 63, can be determined from six surface con-
ditions (2.18), which after performmg the asymptotic procedure acquire the form

Ai3
i3
[Z (xs)"‘ffs,nl] = Pig+,
n=0 x

)»ij . :
[ Z (x3)"‘7f3,n1] = Pig-.
n=0 x3=—1

Taking the differences of these expressions, we obtain three equations from which
quantities 6., have explicitly disappeared

(3.16)

{Ai3i2y

Z Uff,zw 11 = %(Pfs]+ —Pfs]—)a (3.17)
n=0

where (i) represents the integer part of number 1. When considering cases (A) and (C)
from (3.5) we substitute (3.13) into (3.17) and obtain three equations with three unknown
functions u!>, w*%. Case (A) includes shells loaded by a moderately varying surface
load, as it can be established from (2.10) and (3.5), the variability of the surface load being
characterized by quantity L from (2.9). Case (C) comprises flat and very shallow mem-
branes (precisely speaking, it includes plates and (very shallow) shells the stresses and
displacements of which should be determined in the lowest-order approximation from
the equations of non-linear theory of flat membranes).
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In case (B) the simple rearrangement of (3.17) has to be made to remove o724, since
this term is dependent on the basic unknown quantities o520 [see equation (3.13.2)]. To
do this (3.13.2) is written in the following form

h ,
Ulss?n] = - ﬂ(vaa?s?n -1] + R[3s,3n]) (3 18)
The expression for R3,; can be easily found by comparison of (3.18) and (3.13.2). Making

use of (3.18) and of the surface condition (3.16) with i = 1,2, we obtain the following
system of equations

{Aua3/2) .
3 e
Y 0B = 5P —PL),
n={_

B (A33/2> (3.19)

(A33/2>
Y MOiHmsn = "%I:P?su —Py- +—gVa(P‘;s]_ +P[§1+):| —3 > RiGns11
n=0 n=90

The expressions for a{] ,, from (3.13) are now substituted into (3.19) and system (3.19)
assumes the resulting form with u#% and w'*% as the unknown functions that are to be
determined.

Case (B) includes plates (R = oo and then p* > ¢, where ¢ is an arbitrary constant),
shallow shells [owing to relatively great value of R because the “‘shallowness” of the shell
is indicated by exponent p* from (2.10)] and shells loaded by quickly varying surface
load (on account of a relatively small value of L).

The resulting system of equations (3.17) or (3.19) will be called the main system of
iterative process. This is linear provided

p>q"+2p" +2p, (A)

(3.20)
p > 4g—p) (B)
The non-linear main system of equations is derived for ul%-%, wi%0 if
=gt +2pt +2 +pt > 0), A)
p=q +2p"+2p  (p+p ), | 321)

p = 4q—p), (B)

and also when (C) is the case in question.

If the exponent p does not satisfy the conditions of (3.5), the state of stress and strain
in the shell cannot be determined by the asymptotic method presented here.

The relations (3.5) according to which we establish a type of iterative process to be
used in the given case, can also be expressed in terms of the characteristic quantities

pt <g—2p—hR < L2, (A): 1.
.o hL?
p>qt+2p +2p<—>97’<E*R~3—, 2.
2
p=q " +2p"+2p; p+p* >0H9%EF; R>» L; 3. (3.22)
p+ = q——2p<—->hR I~ LZ, (B) 4.

pt >q—-2p—hR > L2, 5.
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4
p>Hg—p)—? < E(%) , 6. (3.22 contd.)
h 4
p=4(q-p)<—+§‘zE(Z) ; 7.
h\* [hL? h
T —5|| <2 L E+ : 8.
max[E(L) ,E( R3)] <9~EL. ). 8

At the end of this section, it is convenient to recapitulate briefly the results of the foregoing
investigation. The solution of the basic system of equations (1.13) subject to the surface
conditions (1.18) is assumed to have the form of expansions (3.11), the coefficients of
which can be determined from (3.13) and (3.16), provided 4% and w'*% are found from
the main system of equations of the iterative process (3.17) [or (3.19) in case (B)]. The main
system is linear in cases (A) and (B) if conditions 2 and 6 of (3.22) are satisfied, respectively.
The main system of the zeroth order approximation consists of non-linear equations if
condition 3 is case (A), 7 in case (B) and § in case (C) are fulfilled in (3.22).

4. ZEROTH ORDER APPROXIMATION

In this section we present the zeroth order approximation for the case (B) from (3.5)
[by introduction of the additional symbol {i}, the resulting system of equations will be
written in such a form that also cases (A} and (C) will be included]. The case (B) includes
plates, shallow shells and shells loaded by a quickly varying surface load as it was shown
in the preceding section. It is anticipated that the zeroth order approximation in this case
will be in good agreement with the classical non-linear theory of plates and that of (quasi)
shallow shells (as the shells loaded by quickly varying load, which are not included within
the scope of classical non-linear theory, satisfy the assumptions of Koiter’s theory of
quasi-shallow shells [11], the formal comparison between the equations of the zeroth
order approximation and those of [11] can be made). The relations (3.13) for s = 0 now
take the form

h
L Gfg,n] = “é;vﬁg?g,n— 1] (n=12);

h_.
2. Ojom = “%[{’}Vﬂfos,n—1]+{k}baﬁ0f5,n~1]+{I}Gfg,n—uvavaw’m} (n=123)
(4.1)
3. 081y = H#™V 401

0% o) = H“"‘f”‘(V.,uio’O]—-{k}bww[""”—%% [}V w00y _y10.03).

N
4 Ul = — (i} Vo0,
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where in case {A)
{if=0 {k} =1,

=0 if p>q*+2p*+2p (9’ < E%), (4.2)
2
=1 if p=qg*+2p"+2p,p+p* >0 (g‘zE%j— R>>L),
in case (B)
{i} =1,
tk}=11if p* =q-2p (hR ~ L?),
{k} =0 if p*>q-2p (RR> LY, “43)
. h\¢
B=0 it p>d4a-p) (7 3]
. h\4
{h=1if p=4g-p (g’z E(Z) )
and in case (C)
{if=1{k=0 (=1 (4.4)
As in the considered case we have
Ay =2, 33 =3, (4.5)
the equations of the main system (3.19) become
0?8,1] = %(P?0]+ —P?m-), 46)
33 __ 1 P3 3 : h x h 33 ‘
oto.31 = ~ 5| Pior+ — Pior- +{’}§Va(P'fm~ +Pfoy+) |~z Ris s
where
Rty = {k}bgoi8 o1+ {11078 o)V, V,w "% (4.7)

To express (4.1) and (4.6) in a form suitable for the comparison with the equations of
classical theory, we introduce the following notation

L, 6 , « 3
ofbo = z"(gl’ ofn = Pm[(’,’], ol = e (4.8)
Then equations {(4.6) read
Ve = — P+ — Pioy-)s (49

N k & -2
VoV iy + {k bagnily + { GV Vew!® % = — [P for+ —Pioy-+ {1} 5 VelProys +P (01‘)} '
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and to complete the system of the main equations we have to rewrite (4.1.3) (using (4.8))

ni = hH“ﬂ“”‘(V 00— (k)b WO+ LIV W00 ¥ W), (4.10)

mify = —{i } H“"V"V VO (g = Vymif).

If we now substitute (4.10) into (4.9) we obtain three equations for three unknown quan-
tities ul®%!, wi®9!, In performing this manipulation we have to keep in mind that from (2.4)
there follows

Va(bﬁyFFs.]) = (Vabﬁy)FFS.—p-pq"'bﬁyVaF!s.]‘ (411)
The resulting equations in the terms of the displacements now read

RH#7Y .V 0 — (kb V pwt® 01— {m} (V b, W%

+3V{ VWO VW] = — Pfoy, — Plo)-),

2
hH“‘B”"[{i}%VaVﬁV),V,‘wIO'OJ ~({k}bog+ {1}V, V10NV 001 (4.12)

h \
RPN SULATS va°°l)} Pioys = Ploy- +{i} 3 ValPloy- + Py

({m}=1 if p+p* =0, {m}=0 if p+p* >0
On account of (2.4) and of the relation
Vo VF"* =V V F™ = a*(bygh,, —b1ubp) F® + a"(bygbyy — by b p ) F*
we can write
V.V Fl = VeV Fi+ M(ays, b)) F 2524+ 4.13)

where M(a,g, b,;) is a polynomial in arguments a,;, b,; and their associated tensors (F may
be an arbitrary tensor). We are now in position to put equations (4.9) and (4.10) in the
usual form of the classical theory of shallow shells. The general solution of (4.9.1) may be
given in terms of an AIRY stress function @y,

nh = NB+e*PV,V 0, ("V'=6e2=0¢2=-¢"=0a"% (419
where Ni§, denote an arbitrary particular solution of (4.9.1).

After substituting (4.14) into (4.9.2) and after performing operations £%V,V,, in the
relations

2
S = VPOVl 2 (kb o0 + (VOO0 (4.15)
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which are inverse to (4.10.1), we obtain two equations for the unknown quantities Dy
and w9 (if p+p* > 0):

1
gg“"sﬁp‘a?va"“’F ViV, VYV B+ e eP({k1b,,

affyx

L -
* 2 {l}vavﬁwm‘m)vlv#w[o’m = - ZEMEMFL%IMV;,V”N?S] ;

4.16
— &P ({k}b g + {1}V, V WO ONV ¥, By, + (i} gvaaV,,vyvxwm»Oi oo
~ (NT.T = Py — Py 4} 2V.AP -+ Py )+ (N
Considering the case that
P x P @417
in (1.18), we have from (3.4)
P& =0, (4.18)

and the resulting form of the system of main equations [(4.12) or (4.16)] is then simplified
[in (4.16) N§§, = 0].

Finally, we remark that not only the right sides, but also the structure of the system of
main equations for the higher order approximations differs from that of the zeroth order
approximation. In the higher order approximations, the non-linear terms (e.g. of the
type a3 o;. wi»%) occurring in the zeroth order approximation are replaced by the linear
terms (of the type il + 67§ o,w>°). From this it follows that the system of main
equations for the higher order approximations is linear.

In addition we wish to note that by taking

ri3 =0, ra=p+p’, ryg=4q", r,=2q-3p—p,  ry=2q-2p-p —p,

instead of (3.6.A) we obtain the iterative process corresponding to the inextensional theory
of shells (case (A) corresponds to the classical membrane theory of shells).
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AGCTPaKT—METONOM ACUMNTOTHYECKOTO HHTETPUPOBAHHS TPEXMEPHBIX (reoMeTpUvEeCKH) HEMUHERHBIX
YPaBHEHUH YNPYroi Cpenbl MOCTPOEHbI ABYMEPHblE UTEPALHOHHBIE NPOHECCH 1M1l ONPENENEHHS COCTAB-
JIAIOLIUX TEH30PA HANPAXKEHUA W BEKTOPA CMELIEHHS B TOHKMX aHW30TPOMHbIX 000M0YKaX (TUTaCTHHKAX).
VYcnosus, KOrna rnaBHas CUCTEMa YPaBHEHUIl MTEPALMOHHOTO INpPOLECCA JMHEHHA WM KOIAA INIaBHAS
CHCTEMA HYJIEBOTO NpUb/IMXKEHNS HeJIMHEHHA, BHIPAXEHBI Ye€Pe3 XapaKTepHCTHYECKHE BEJIHYHHBL, KOTOPbIE
XapaKTEPU3YIOT TEOMETPHYECKUE W MaTephasibHble CBOWCTBA 000n04KU (MNIACTHHKM), HHTEHCHBHOCTHL U
W3MEHAEMOCTb TIOBEPXHOCTHOW HArpy3ku. Buumanue ynenserca TONbKO ‘‘BHYTpeHHeR> 3amave—He
PACCMATPHBAIOTCA KpaeBbie PhexThl.



